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The scattering problem is considered for the one-dimensional Dirac equation 
whose potential is a system of randomly distributed point scatterers. Types of 
such scatterers are described. The probability densities for the transmission and 
transformation disbalance coefficients are determined in the high-energy region 
and various averaged characteristic are calculated. 
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1. I N T R O D U C T I O N  

There is an extensive literature describing the scattering problem for the 
Schr6dinger equation with a random potential (see e.g., ref. 1, Chapter VII, 
for a review and references). This problem is, however, of great interest for 
the Dirac equation as well. Reasons to study it are the following: first, it 
is desirable to comprehend what complication or a new aspects may 
appear for a two-band spectrum, and second, there is a class of physical 
problems connected with the propagation of short, random impulses 
through regular media which reduce to the Dirac equation (written in a 
moving coordinate system) with a random point interaction potential. In 
particular, studying the nonlinear absorption of a stochastic acoustic signal 
by a superconductor, we arrive at the equation (2/ 

-iv(Crz - fl) ~x + AaxO + f lU(x)0 = EO (1) 
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where U(x) is a random potential, v is the particle velocity in the 
laboratory coordinate system, A is the dispersions law gap, s is the velocity 
of the reference frame connected with the acoustic wave (the sound 
velocity), fl = sly, and ox and az are the Pauli matrices. Following ref. 3, we 
call (1) the tilted Dirac equation. Moreover, we say that fl < 1 corresponds 
to the weakly tilted case and fi > 1 to the strongly tilted case. 

In one-dimensional disordered systems the scattering problem plays an 
important role. The corresponding scattering characteristics behave in a 
specific manner reflecting the well-known fact of state localization. For 
instance, the transmission coefficient for the SchrSdinger equation turns 
out to be exponentially small as a function of the length of the disordered 
segment. Moreover, the scattering characteristics are directly related to 
some kinetic quantities of such systems. For instance, the electrical conduc- 
tivity of a disordered segment of length L is given by the Landauer formula 

e 2 ( T i ) v  

GL- h (R~)v (2) 

while its thermal conductivity is given by 

n2kv T 
K~-  3 ~  ( z~r i )  (3) 

Here (.)v.B denotes the averaging over energy with the weight -OnF, B/~E, 
where nv, B is the Fermi (Bose) function and TL and Rc are the tranbmis- 
sion and reflection coefficients of the segment, respectively. (The derivation 
and discussion of these formulas can be found, for instance, in ref. 1.) 
The absorption rate of the sound by a superconductor is determined, 
analogously to (2) and (3), by the formula (2) 

oo ~Tg -oodZRL(El(e+-e-l[n~(e+)-nv(e )] 

Here N(Ev) is the density of states at the Fermi level and E+(E) are the 
dispersion laws for the unperturbed problem [for flU(x)--O] in the 
laboratory coordinate system. 

The scattering and the corresponding spectral problem for Eq. (1) with 
a Markov-type potential have been considered in ref. 3. The main results 
obtained in ref. 3 are the following: in the weakly tilted case the mean 
transmission coefficient for a disordered barrier of length L is exponentially 
small for large L and all states of the infinite system are localized, i.e., its 
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spectrum is pure point. In other words, in this case the structure of the 
solutions to the weakly tilted Dirac equation with a random potential 
qualitatively resembles the structure of solutions to the Schrbdinger equa- 
tion with a random potential (see, for instance, ref. 1). On the other hand, 
for the strongly tilted case the reflection is replaced by a partial transforma- 
tion of waves between two scattering channels with a mean disbalance coef- 
ficient being exponentially small. For  an infinite system all the states are 
delocalized and the spectrum is absolutely continuous. 

One of the most popular models of the random potential is a potential 
generated by point scatterers randomly distributed over the axis. This 
potential serves as a basis for many exactly solvable models of one- 
dimensional disordered systems. In a recent paper, (4) for instance, the 
probability density of the transmission coefficients in the Schr6dinger case 
was obtained explicitly for this potential in the high-energy limit. 

In the present paper we study the properties of the tilted Dirac equa- 
tion (1) with a potential flU(x) generated by random point scatterers. As 
already mentioned, this problem arises in particular when investigating the 
transmission of random sequences of extremely short impulses through a 
regular medium and is interesting from the mathematical as well as from 
the physical point of view. 3 This is partially connected with the fact that the 
point potentials, which for the Dirac equation are more complicated than 
for the Schr6dinger one, remain poorly understood. Particular attention is 
paid to the scattering problem. We compute the probability densities for 
the transmission and transformation coefficients in the high-energy limit in 
both the weakly and strongly tilted cases. It can be shown that the spectral 
properties of the problem on the whole line are fully analogous to those for 
the Markovian potential already discussed and we do not describe them 
here. 

2. S T A T I S T I C A L  P R O P E R T I E S  OF T H E  T R A N S M I S S I O N  
C O E F F I C I E N T  IN T H E  W E A K L Y  T ILTED CASE 4 

In the weakly tilted case we write the solutions to Eq. (1) on the right 
and on the left sides of the disordered segment (0, Zo) in the form 

e , z<O i ~ ) =  tp+(O) lu+)e'P+z+o (O) ju > ,p_z 
0+(Zo) [u+ ) eiP+(Z-z~ + O_(Zo) ru_ ) e ip (,-zo), z > z  o 

3 For more extensive physical motivation see ref. 2. 
4 Most of this section is a simplified version of ref. 4 adapted to the Dirac equation. 
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where p+(E) are the momenta of the plane wave solutions of Eq. (1) for 
U(x) = 0. Then the transfer matrix if connecting these solutions 

~_(Zo)) _(o)) 

and fulfilling the current conservation law 

[~, +(z)[ 2 -10_(z)[  2 = const (4) 

is given as follows: 

/ (]~ 2-~1)'/2 exp(i(o ~ ) ( ~ J - )  1/2 exp(iqoB) '} 

expi(2--qo~) ( ~ J - ) e x p i ( Z - c p ~ )  
(5) 

Note that in contrast to the Schr6dinger and nontilted (/7=0) Dirac 
equations, the transfer matrix in the tilted case depends on four (rather 
then three) parameters. The point is that in the first two cases there 
exists a simple procedure that transforms a given solution into a linearly 
independent one. This transformation is given by a simple complex 
conjugation in the Schr6dinger case, whereas for the nontilted Dirac equa- 
tion it is given by the charge conjugation (complex conjugation combined 
with a simultaneous transposition of the components). The existence of 
these operations reveals itself as additive constraints on the if-matrix 
elements, i.e., there are only three independent parameters left in these 
cases. There is, however, no such operation for the tilted Dirac equation. 

The point interaction potentials, which can be naturally thought of as 
the short-range limit of the potentials in (1), also conserve the current (the 
corresponding operator is self-adjoint; see the Appendix). The ir 
which describes the evolution of the vector 

(;:) 
when passing through the scatterer is obviously parametrized in the same 
way. In order to distinguish the if-matrix corresponding to one point 
scatterer from the if-matrix describing the whole segment (0, z0), we use an 
index 1 labeling all its elements. 

The particle transmission through the disordered segment (0, Zo) is 
described by the corresponding if-matrix, i.e., by its elements 7, ~o~, qot~, 
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and2. The parameter 7 is simply connected with the transmission 
coefficient T =  [Tll1-2, 

7 = 2 / r -  1 

Therefore, in order to find the probability density w(71Zo) of 7(Zo), it is 
enough to integrate the probability density 

w(~t  ~) - w(~, ~o~, ~o~, ,~ I Zo) 

over the remaining variables q~, q~, and 2: 

w(71 z) -- f w(~l z) &o~ d(p, d2 

Taking into account the current conservation law (4), it is natural to 
parametrize the vector (o~ as follows: 

t~ + = e ~ +~), ~ = - -  e ir176 

Here I(z)=]l/l+(z)I2--l-Ii]l (z)] 2 is the wave intensity and - J ( z ) =  
I~+(z)t 2 -  Iq) (z)lZ=const  is the conserved current. The dynamics of the 
variables /, (p is separated and is described by the following equations 
[cf. Eq. (7) in ref. 4]: 

](Zo)~-~/Io-I-( 'y2--1)I /2(I2-- j2)I /2GOS(~I);  r = 2q~o + q)~-- ~0~ 

e2i~o~o~[ i 2 ( z o )  _ j 2 ]  1/2 

= e i ~ +  ~"-~)[ (7  2 - 1 )1/2 I0 + (12 - j z ) v 2  (7 cos ~ + i sin 6 ) ]  

(6) 

where Io= I (0 )  and q~o = ~0(0). It can be easily seen that the Jacobian 
~ ( I ,  q ) ) /~( lo ,  ~Oo) equals 1 and hence the phase volume dldq~ is conserved 
under the transformation (6). 

Let us now introduce the probability density of the pai r / ,  q) at point 
z under a fixed current J: 

Wj(FI z) dE; r =  {I, ,} ,  

Then W j  solves the integral equation 

dV= dl &o 

Wj(FI z) = f 6 ( F -  ITo) w(]bl z) Wj(Fo [ O) dT dF o 

d r ' = &  d~p~ &o , d,~ 
(7) 
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Here 27 is an operator defined by the system (6) with z = z o and with the 
parameters 7, (P~, (P~, 2 corresponding to the 2?-matrix of the segment 
(0, Zo). 

Let the disorder be caused by point impurities which are inde- 
pendently and uniformly distributed over the segment (0, zo) with a mean 
density n. Then, taking into account that the segment (z, z + dz) does not 
contain an impurity with the probability 1 -  n dz and does contains an 
impurity with the probability n dz, it is easy to find that the probability 
density Wj(F[z) satisfies an equation which follows from (7) (see refs. 1 
and 4 for details) 

~W p 0W 
~z + ~ - ~ +  n ( w -  g / )=0  

where 

p = p + ( E ) - p _ ( E ) ,  W= W(Io(I, r (8) 

In the high-energy limit p ~ ~ we can find the solution of this equation 
as a series in powers of p 1. The zeroth-order approximation is q~ 
independent, i.e., 

w(O) Ws(~ z) (9) j ~-- 

and a nontrivial equation for it can be obtained from the condition of the 
existence of 2n-periodic solutions of first-order approximation equations. It 
has the form 

1 OW(j~ 1 f~" 
n ~z - 2 ~  W(j~ q~)]z) dq~- W(j~ (10) 

On the other hand, using (6) and (7) and an obvious condition 
W~~ = 6 ( 7 -  1), it is simple to see that in the same approximation the 
following equation holds: 

w(~ = w~~ z ) 

Taking J =  1 in (10), we can see that the sought probability density 
w(~ ) solves the integral equation 

! ~w(~ L z) 
n Oz 

=2--~ w(~ E(7 2 -  t)( '~ 2 -  1 ) ] i / 2  COS 2q~lz} dq~-w(~ 

(11) 
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Here all the arguments of the unknown function are greater than one and 
it is therefore natural (as in the Schr6dinger case (4)) to seek the solution in 
the form of an integral over the cone functions (5) 

w(~ [ z) = f o  ~(~ z) P -  u2 + n(7) dt 

Inserting this representation into (11) and using the addition theorem for 
the Legendre functions, we find 

1 O ~ ( ~  I z )  

n 8z 
E P 1/2+it(~l)-- 1] v~(~ Iz) 

and finally 

w(~ = J 0  P -  1/'2 + it(7) t th(~t) 

x exp{nz[P_l/2+it(71)- 1]} dt 

This implies, in particular, that the inverse localization length, which is 
defined as the (self-averaged for z--* oo) decrement of the transmission 
coefficient on a given realization 

1 - 1  = - l i m  z - 1  In T(z) = - -  l i m  z - ~ ( l n  T(z)) 

can be expressed in the high-energy limit using the density of scatterers and 
the transmission coefficient for one of them only, 

l -  1 = - n  In T1 

This formula coincides with the respective formula in the Schr6dinger case 
and is the same as in the independent-scatterers approximation. (I) Thus, 
the difference between the Schr6dinger and Dirac cases is determined com- 
pletely by the form of the energy dependence of the parameter 7 which 
describes the scattering on a single point scatterer. 

3. THE  P O I N T  S C A T T E R E R S  FOR T H E  D I R A C  E Q U A T I O N  

The general form of the J-matrix of the point scatterer in the weakly 
tilted Dirac equation is given by the formula (5). This is in full agreement 
with the existence of a four-parameter family of self-adjoint extensions of 
the Dirac operator which is the natural candidate for the point interaction 
Hamiltonians. (6) 
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In order to obtain a concrete dependence of the it-matrix elements on 
the energy, we consider first Eq. (1) with a square well potential 

=~Uo, ]xl <a (12) 
~U(x) IO, Lxl >a 

Taking the limit Uo ~ 0% a ~ O, 2aU o ~ ko = const, the matrix T of (5) 
corresponding to the potential (12) becomes equal to 

T=e  2i~-{I+(1-e2ik~ /#))( sh20~ s h 0 o c h 0 o ) ]  
- s h  0och 0o, - c h  2 0o / J  (13) 

where 

ko E 
cth 20o = - -  Eo = A(1 - fi2)1/2 

~-+ =- 2v(1 + fl) '  E o ' 

The single-scatterer reflection coefficient R1 = 1 -  liPH] 2 is given by 

[ (  )11-1 
R l = 1 + sh 2 200 sin 2 v(lk__~ (14) 

and we get for the localization length 

( %) l - l = n l n  l + s h  220osin 2v(l_-  (15) 

Using the natural definition of the integral 

I ~ 6(x) q , (x)dx=�89162 
c 

the point perturbation described by the T-matrix (13) can be written down 
using the term 

koa(X) P@ (16) 

where P is a diagonal matrix of the form 

p =  ( (tg c~_ )/c~ , 0 ) 
\ 0, (tg ~+)/c~+ (17) 

In the case of a weak scattering (~+ ~ 1), P-~ I and 

ko 
R - sh 2 20o ~2(1 _/~2)2 
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In the limit case n-~oo,  k o ~ 0 ,  and nk2o--,2d we get from (15) an 
expression for the localization length which corresponds to a white noise 
potential and which was previously published in refs. 2 and 3: 

l -  1 _ 2d Eo 2 
v2(E- Eo) 2 (1 -/32)2 (18) 

From (13) and (14) it follows that in the case 

ko 
v(1 -/3~) = n~ 

the point scatterer becomes reflectionless (R = 0). The respective T-matrix 
is equal to e x p ( - 2 i e  )I, while the potential (12) for e+ # (2n + l)~/2 is 
described by (16) and (17). Let us stress that this fact is a property of the 
tilted Dirac equation. In the untilted case,/3 = 0, the reflectionless potential 
corresponds to a T-matrix which is equal to + / ,  while the potential itself 
equals either zero or infinity, respectively. The inverse localization length 
(15) is also equal to zero. Consequently, we can construct a random poten- 
tial which is made from the reflectionless scatterers and for which even in 
a typical "localized" weakly tilted case all the states will be delocalized. The 
state structure is extremely simple: only the phase of the wavefunction 
changes with the coordinate, being a random, uniformly distributed quan- 
tity from the interval (0,27r) at each point x. Let us note that the 
mechanism of the above-described reflectionless potential is completely 
different from the mechanism of the so-called Bargmann potentials) 7) 

The structure of the self-adjoint extensions for the Dirac equation was 
previously investigated. {6) In particular, two one-parameter families were 
distinguished which are in some sense analogous to the point scatterers of 
the type 6(x) and 6'(x) in the Schr6dinger equation. In the case of a weakly 
tilted Dirac equation the T-matrices corresponding to these scatterers have 
(in the basis @ +, @_ ) the form 

�9 1, _+1 )  (19)  T=I+ 2 e+2~176 

Here the upper and lower signs correspond to the scatterer of the type 6(x) 
and c5'(x), respectively. Their Schr6dinger analogues are (in the same basis) 
the following: 

f = i + ~  +1, 
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Comparing now (19) with (20) and taking into account (13), we can see 
that in both cases the perturbations of the type 6(x)  become infinitely 
strong for E-~ Eo (k ~ 0), while the perturbations of the type 6'(x)  tend to 
zero. In the high-energy limit, however, the behavior of these perturbations 
in the SchrBdinger and tilted Dirac equations becomes quite different. In 
the Schr6dinger case the perturbation of the 6 type becomes infinitely 
weak, while the 6' type becomes infinitely strong. On the other hand, in the 
tilted Dirac equation both the perturbations 6 and 6' tend to a finite limit 
as E--+ ~ which is equal to 

,, , -+,,) 

One can introduce the 6-like potential directly also for the tilted Dirac 
equation. The wavefunctions become discontinuous in the points x = xj 
where the scatterers are localized and the corresponding integral is defined 
as follows: 

fxx'+~ xj) Lr ) dx= �89 ) + [~(xj-0))] 
--0 

Equation (1), which describes the system with scatterers of 6 type, has the 
form 

(21) -- iv(az -- fl) ~ + A a x ~  -- v ~ kofi(x - xj)  P,~O = E ~  
J 

where the projection P~ is given by 

// �89 -- fl), �89 fl2)'/2~ 
Pa=~�89 '/2, �89 // 

For the reflection coefficient corresponding to one point scatterer of the 6 
type, we find 

R 1 - - ~ v 2 ~ E  0 

Hence, for k o ~ V the inverse localization length is equal to 

nk~ 
1 - 1  = 4V2(E 2 --Eo 2) 

and in limit n ~ ~ ,  ko ~ 0, nk~--+ 2d, it is considerably different from the 
expression (18). This means that in the Dirac case the point potential in 
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(21) is analogous to the 6 function in the Schr6dinger equation in the sense 
that it gives the same T-matrix in the basis ~ +, ~ _, and the point poten- 
tial (16) obtained as the short-range limit of the square-well potential (12) 
and generating the white-noise potential corresponds to two different 
families of self-adjoint extensions. In the Schr6dinger case, however, these 
families coincide. 

4. STAT IST ICAL  PROPERTIES OF THE T R A N S F O R M A T I O N  
COEFFIC IENT IN THE S T R O N G L Y  TILTED CASE 

In the strongly tilted case both the free solutions propagate in one 
direction only. The solutions of Eq. (1) on the left and on the right side of 
the disordered segment (0, zo) respectively are connected by the transfer 
matrix T, 

+iz0   

which has the form 

\ - - ~ ]  exp(iq~) 

1 + 7 1/2 T = - ( ~ - ~ ) l / 2 e x p [ i ( 2 - ~ o ~ ) ]  ( - - - ~ ) e x p [ i ( ) t - ( p ~ ) ] J  (22) 

In such a way a wave of the first type which is incident at the right end of 
the disordered segment [0  (z0)= 0] is partially transformed into a wave 
of the second type. The difference of the squared moduli of the free solu- 
tions on the right is proportional to the quantity 7. The transformation is 
absent for ,/= 1, while for 7 = -1  the solutions of the first type are com- 
pletely transformed into solutions of the second type. It is therefore natural 
to call o/the disbalance coefficient of these transformation. 

Analogously as in Section 2, we introduce a probability density 
w(~, (p~, (p~, 21 z) which, being integrated over the variables (p~, ~0~, 2, gives 
the probability density of the disbalance coefficient. Since in the strongly 
tilted case the conserved quantity is given by the intensity I~+(z )12+  
I ~ _ ( z ) 1 2 -  - t = - c o n s t  and not by the current J(z)= ]0+(z)t 2 -  t0_(z)l 2, it is 
natural to parametrize the vector (~9+, 0 ) as 
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The dynamics of the pair (J, cp) is separated and is determined by 

J(z)=TJo+ [(1 -72)( I2- j2)] l /Zcos f f l ,  0 = 2Cpo + ~G-  r 

[ i  2 __ j(z)2] 1/2 eZiq~(z) 

= e *~~ ~'e '~)[- - Jo(1  - ~c2) ~/2 + (12 - j2)(y cos 0 + i sin ~0)] 

(23) 

The Jacobian @(J, q))/@(Jo, ~Oo) is again equal to one and the phase space 
measure is therefore conserved. 

Let us introduce further the probability density of the pair (J, q)) at a 
point y = z o - z  which corresponds to a fixed "intensity"/ ,  

W,(Cl y)aF,  F =  {J.~0}, d r = d J & o  

Then W solves an integral equation 

W , ( F l y ) = f  f ( r - - T F o ) w ( T l y  ) W, (Fo lO)dTdF o (24) 

where i? is an operator given by the system (23). 
If the disorder is caused by independent uniformly distributed scat- 

terers localized on the segment (0, Zo) with a density n, then the probability 
density WI(FI y) again solves Eq. (8), where now 

p =  p_ - p +, lYCt= Wl(Jo(J, qo)l y) 

The equations and solutions of the zeroth-order approximation in the 
parameter lip are obtained in the high-energy limit from (9) and (10) 
changing J+-+I and z~--,y, respectively, and taking Jo(J, (p) from (23). 
Moreover, we get from (23), (24), and the condition 

W~~ I O) = ~5(J- 1) 

that in the zeroth-order approximation we have 

w~~ I y) = w~~ I y) 

Therefore the integral equation for w(~ ) acquires the form 

Ow(~ n f ]  ~ 
~ y  2-7~ v ,  w(O){'~V 1 - -  [ (1-72)(1-72)]1/2  cos 2~ol y} &o 

- nw(~ ) (25) 
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All the arguments of the unknown function are less than one. It is therefore 
natural to seek the solution as a series in Legendre polynomials: 

k=O 

Inserting this series into (25) and using the addition formula for the 
Legendre polynomials, we find 

1 w2O  

and finally 

~ 2 k + 2  
w~~ z) = ~ Pk(~) enZ~Pk~7'~ ~l (26) 

k=0 

From this expression it follows that the mean value of the disbalance 
coefficient is exponentially small for large z, 

2 (7) =e-2z/l, l-- 
n i l  - PI(~I)] 

It is therefore natural to call l the mixing length. In the weak scattering 
case, 71 = 1 - 2R1, RI ~ 1, the mixing length is equal to 

l=(nR1)  -1 

and the probability density (26) is transformed into 

2 k  + 1 
W(0)('~ I Z ) z, 

k=0 2 
- -  P ~ ( 7 )  e - k ( ~  + 1)z/l 

Approximating the point potential by a square well potential with a 
shrinking support, we find the explicit form of the T-matrix 

( 2ik o 0 o cos 
- -l~/sin0oCOSJ\ 0o sin 

where c~ + = ko/2V(fl _+ 1) and ctg 200 = -E/A(/~ 2 - 1 )1/2. 
For the transformation coefficient we get 

ko 
Rl = IZ1212 = sin e 200 sin 2 U(f l2  __ 1 ) (27) 
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which yields in the weak transformation limit an expression for the mixing 
length 

/c_ 2 sin 2 200 l - -  1 - -  n ' ~ O  

2 2 

coinciding with those obtained originally in refs. 2 and 3. For  

k 0 

v ( f l  2 _ 1) = n g  

a transformationless transition, R I = 0  in (27), occurs through the par- 
ticular point scatterer. 

Let us note in conclusion that for a sound signal which is a sequence 
of extremely short (point) pulses, just as for a white noise signal, (2) the rate 
of nonlinear absorption by a superconductor is significantly higher than 
that of a periodic signal of finite length and is practically independent of 
the signal root mean square amplitude (see the respective results for the 
white noise case in ref. 2). 

APPENDIX  

Here we consider mathematical questions concerning the point inter- 
action in the tilted Dirac equation. Namely, we construct the self-adjoint 
operators (Hamiltonians) which correspond to the four-parameter family 
of if" matrices (5) and show that they represent short-range limits of the 
operators corresponding to (1) with local potentials U. We hope that these 
results, the foundation of our considerations in Sections 3 and 4, are of 
interest themselves. 

A1. Construct ion of the Hami l tonians 

Let us start with a free tilted Dirac operator which is defined on the 
Hilbet space .~W = L2(N) |  C 2 by the differential expression 

d 
H = - - i v ( ~  -- fl) -~x + drr~ 

It is simple to prove that H with D ( H ) = { f ~ o v f ;  f ~ A C ( ~ ) @ G  2, 
H f E ~ }  is a self-adjoint operator for all /3~ ~. In order to construct the 
Hamiltonian leading to the T-matrices (5), we follow the standard proce- 
dure when dealing with potentials supported on sets with a measure zero. (7) 
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The first step is to remove the interaction point by defining a restricted 
operator He 

/40 = / 4 1 C g ( ~ \ { 0 } )  | C 2 

The operator Ho is symmetric and for/~ r _+1 has deficiency indices equal 
to (2, 2). The second step is to construct all self-adjoint extensions of H o. 
Because the deficiency indices of H0 equal (2, 2), we have for /~r +1 a 
four-parameter family of such extensions. It is not difficult to show that 
there is a one-to-one correspondence between these Hamiltonians and the 
transfer matrices (5). In order to illustrate it, we restrict ourselves to the 
one-parameter subfamily (19) only. As already mentioned, this family, in 
the case of the 6-type scatterers, is described formally by Eq. (21). Hence, 
in order to find the respective family, it suffices to find a self-adjoint realiza- 
tion of the heuristic expression 

d 
h~. = -iv(az - fl) dx + Aax - v2 (~(x)P~ 

T h e o r e m  1. The self-adjoint realization of the operator h~ is given 
for /~r  +1 by 

H~ = -iV(az - fl) d + Aax 

= { f =  (L,f2)e~,f, eAC(N\{O}), i=  1, 2; D(H)~) 

zlf l (0 ) + f , f ~ ( 0 + ) =  - ~  (1 [f2(0_) + f2(0+)] 

Zzfz(O_)+i2f2(O+)= - ~ ( 1  - [ f , (0_)  + f l (0+) ]  

with Z l = ( ~ - i v  ) ( 1 - f i ) , z 2 = ( ~ +  iv) (l + fl)} 

ProoL Let us first prove that the operator H;. defined by the 
indicated boundary conditions at the origin actually represents a 
self-adjoint extension of He. We know from the general theory (s*) that any 
self-adjoint extension of H o is determined by two independent boundary 
conditions at 0. It is therefore enough to show that the used boundary 
conditions nullify the boundary form 

b(f, g)= (f, H ' g ) -  (g, H ' f )  

822/58/5-6-2 
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[here (-, -) denotes the scalar product in 24~]. A simple calculation leads to 

b(f,f)=iv(1-fl)[Ifl(O+)l 2 -  Ifl(0 )12] 

+ iv(1 +fl)[If2(0 )l 2 -  [f2(0+)l 2] 

and the rest is verified by inserting the boundary conditions directly into 
b(., .). The operator H a is hence self-adjoint. In order to show that it 
represents the realization of the heuristic operator h;~, we use the formula 

fxj ~j+~ ~ ( x -  xj) 10(x)) dx = �89 [ I~,(xj + 0))  + IO(xj- O))] 
- - 0  

and insert it into the equation 

- iv(az-/~)  ~ + Aax0 - v2 6(x) P~ 0 = EO 

An integration by parts leads then to the boundary conditions which deter- 
mine D(Hx). 

A2. The Short-Range Approximation 

We show now that the point interaction Hamiltonians which we 
obtained by applying the yon Neumann theory represent a short-range 
limit of Hamiltonians with local potential. We restrict ourselves to a par- 
ticular one-parameter family of Hamiltonians, which corresponds to the 
class of heuristic operators 

d 1; - 11) 6(x) ha= - i ( a z -  fl)-~x+ Aa~ + c~ ( - 1 ;  

We show that the ha are short-range limits of Hamiltonians of the type 

14o= -i(~z-13) yx+ ~ x  + ~ -1; 

Let us now pass to the precise mathematical formulations of the above 
statements. We introduce a one-parameter family of self-adjoint operators 
H~ which represents a self-adjoint realization of the heuristic operators ha: 
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H a = - i ( a ~  - f l )  d + Aax 

D(H~) = { f =  ( f ~ , f 2 ) e W ,  f i ~ A C ( ~ \ { O } ) ;  i=  1, 2; 

Z l f l ( 0 - )  -[- Z1fl(O + ) = 2 If2( 0 -  ) -~ f2(O+ )3 

~x 
z2f2(O-- ) q- z2f2(O + ) = 5 I l l  ( 0 )  q- f l  (0+)3 

} with z 1 = ~ + i ( f i -  1);z 2 = ~ + i ( f l +  1) 

(In order to show that H a actually represents the self-adjoint realization of 
h~, one has to follow step by step the proof of Theorem 1.) 

Theorem 2. 

with e given by 

H~ = N.R.-lim H e 
~ 0  

1 
~ -  2(1+fl~ (u, (1 + T) -1 V)L2(~) 

where u ( x ) = [ V ( x ) [  1/2, v(x)=lV(x)[I/2sgn(V(x)), and 
Schmidt operator on L2(02) with a kernel 

T(x, y)  2(1 - f12) v(x) s g n ( x -  y) u(y)  

T is 

(A.1) 

a Hilbert- 

N.R.-lim means the limit in the norm-resolvent topology and (. ;')L2(~) 
denotes the scalar product in L2([~). 

We split the proof into several lemmas. 

L e m m a  1. The operators H a and H~ are unitary equivalent to 

B~ = --i(ax -- fl) d _ Aa z 

= { f -  ( f ~ , f 2 ) e ~ , f ~ e A C ( ~ \ { O } ) ;  i=  1, D ( / ~ )  2; 

f l (0 ) - f l ( O + ) = f l [ f 2 ( O _ ) - f 2 ( O + ) ]  

f 2 ( 0 _  ) -- -F2f2(O + ) = -~ [ f l ( 0  ) + f~(O+ )3 
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and 

l T t ~ = - i ( a Y - / 3 ) d - A a z + 2 ( ; ; ; e  00) v ( X )  

respectively. The unitary mapping is in both cases given by a constant 
matrix 

1; --11) U =  (] /2)  1/2 (1, 

Proof .  Direct verification. 

From this lemma it follows that in order to prove Theorem 2 it is 
enough to prove that 

/t~ = N.R.-lim/~ 
e ~ 0  

with ct given by the expression (A.1). From now we will work only with the 
operators/t~, H ...... We drop the tilde in all expressions. 

Lemma 2. The family H~, e e N w  {~},  exhausts all self-adjoint 
extensions of the operator 

d 
H o = - i ( a x -- fl ) -~x -- A cr ~ 

D(Ho) = {f=(fl,f2)~,fi~AC(~); i=  1, 2 and fl(0) = 0} 

Proof .  The operator H o has deficiency indices equal to (1, 1). This 
can be easily seen when we evaluate the corresponding adjoint operator 
H*, which is determined by 

D(H*) = { f =  ( f l , f z ) e f f Y ,  f ,  e A C ( N \ { O } ) ;  i=  1, 2 and 

f ~ ( 0 _ ) -  A(0 +) = /3 [ f2 (0_ ) -  f2(0 +)] } 

Hence all the functions from D ( H ~ )  are already constrained by one 
boundary condition at 0 [note that D ( H * ) r  and the deficiency 
indices are therefore not zero]. Consequently, Ho has exactly one para- 
meter family of self-adjoint extensions. This family must, however, coincide 
with Ha because D ( H ~ ) c  D ( H * )  for all ~ s R. 

Knowing that the Ha represent the self-adjoint extension of Ho, we 
can apply the Krein formula (s) and obtain the corresponding resolvent. We 
restrict ourselves to the case /3 < 1 and we calculate the resolvent only for 
the spectral parameter equal to zero. 
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L e m m a  3 .  

H~ -1 H-I  
= + 2 ( 1 -  fi2)[-1- f l - -~ (1 ,  fl2)1/2] If~ ) (f21 

where if1 )(fz] is a rank-one operator, 

with 

] f l}  (f21: f---~fl(f2;f) 

f l (x)=(f isgn(x)-( f i2-1 ' A ;) , /2)  
sgn(x) )'/2) exp ( (1 

f 2 ( x ) = ( fi s gn ( x ) + ( fi 2 --1) l /2 ) ( A [ x l .'~ 
sgn(x) exp (1 -- fl2)v2j 

H-1 is an integral operator with the kernel 

H-I(x, y) 

_ i (fl sgn(x - y ) -  (f12 _ 1),/ '2; 

2(1 f12)\ sgn( x _ y ) ;  

xexp// A Ix-y[ ) 
\ 

and 

Proof. Direct evaluation shows that for all (p E 

H2 l(p ~ D(H~) 

Proof of Theorem 2. We suppose that fl < 1 and that V~> 0. In order 
to indicate explicitly the dependence of the resolvent on the parameter A, 
we will write H-'(A), H]'(A), and H~-I(A) instead of H- ' ,  H~ ~, and 
H~-1. Introducing the scaling group 

U~: f(x) ~ e l/2f(x/e) 

we find for H2I(A) 

H~I(A)=H '(A)-IH-~(A) UcvP(I +vPH ~ ( s A ) P v ) - '  PvU~-~H-I(A) 
8 

=H I(A)-A~(I+B~)-~C~ 

813 

sgn(x-  y) 
f l s g n ( x - y ) + ( f l 2  1)1/2 

H~H j 1(p = ~p 
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and A~, B~, and C~ are Hilbert Schmidt operators with kernels 

A~(x, y)=H-~(A, x, ey) P(y) 

B~(x, y)=v(x) PH-~(eA, x, y) Pv(y) 

C~(x, y)=v(x) pH-I(A,  ex, y) 

[H ~(A, x, y) denotes the kernel of H-I(A); cf. Lemma 3.] Taking now 
the e ~ 0 limit, we find that the operators A~, B~, C~ converge in norm to 
A, B, C, where A and C are rank-one operators with kernels 

i f13 sgn(x) - (13 2 - 1)1/2;  

iV(X) (13 sen(x ) -- ( f12  l)1/2; Sgo(X) ) exp ( __A ~ _'~ 
C(x, y) 2(1 p o; (1  _ 132)1/2/  

and the operator B is described by 

i [13v(x) sgn (x -  y) v (y ) -  v(x) v(y)(13 2 - 1)1/2; 
B(x, y ) =  2 ( 1 ~  \ 0; 

Thus 

n-lira H j  1 = H - l ( z l ) - A ( 1  +B)  -~ C 
e ~ 0  

(A.2) 

To invert the operator (1 + B), we split the operator B into two parts: 

B = B I + T  

with B1 being a rank-one operator 

1 fv(x)v(y), 00) 
B~ 2(1-fl2)1/2 \ O, 

We get then 

( I + B )  t = [ I + ( I + T ) - I B 1 ]  1 ( l - l - T )  ' 

(Note that a rank-one operator can be inverted explicitly.) Inserting this 
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formula into and comparing the result with the formula for H~-~, we obtain 
the assertion of the theorem. 

The coupling constant c~ is a quite irregular function of the potential 
V. In order to illustrate this peculiarity, we multiply the potential V by a 
constant 2. In such a way c~ becomes a function of 2, 

~ ( , ~ )  - 

2(1 +f l )  
- -  (u, (1 + 2 T )  -I  v)L2(a) 

The function c~(2) is, however, not smooth. It has singularities which are 
localized at points 2~ for which - 1/26 is an eigenvalue of the operator T. 
On the other hand, T is Hilbert-Schmidt and the behavior of its eigen- 
values is very well knownJ ~~ Applying results from ref. 10, we get the 
following assertion: 

Let N ( A )  be the number of singularities of the function ~(2) which are 
localized in an interval [0, A 3: 

N ( A ) =  # {2E [0, A ] ; ~ - ~ ( 2 ) = 0 }  

Then 

lim N ( A )  fl V(x)  dx  
A ~  A 2~(1--f l  2) J~ 

To illustrate the behavior of c~(2) in more detail, we choose V(x)  in a 
square well form 

V(x) = {0; xr 13 
Vo; x~ [0, 13 

and decompose c~(2) with respect to 2, 

1 ~(,~) - 
2(1 +fl)  

- -  [.~(U, U)--,~2(b/, TV)-I L . . .  -[-(--1)nfl.n+l(bg, T n v ) - ~  " ' 3  

(A.3) 
For (u, T~v) we get 

(U, T2"+ iv) = 0 for all n 

]2,, 
(u, T2"v) = (- -1)  n -oV2~+~ 2(1--f i2)J  

f2 ... 
x sgn(x2n - x2n + ~ ) dx  I d x 2 . .  dx2n + 1 
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N o t i n g  tha t  

1 1 1 

fo fo ' "  fo sgn(xl  -- X2) sgn(x2--  x3) " ' s g n ( x 2 n - -  X2n+ l) dXl dx2 .. .dx2n+ l 

22(n+ 1)(22r 1) -- 1) 
-- B2n + 2 

(2n + 2)! 

where  B2. are the Be rnou l l i  n u m b e r s  a n d  inse r t ing  this  resul t  in to  (A.3), we 

get f inal ly 

~(;o)=~_~ f ~Vo/~ 
tg t20_---fi2)) 

which is in  g o o d  c o r r e s p o n d e n c e  wi th  the resul t  o b t a i n e d  for the shor t -  
r ange  a p p r o x i m a t i o n  of the t ransfer  m a t r i x  (13). 
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